Chapter 9 Assignment

(Answers are in parenthesis)

1. The liquids, perfluoro-n-heptane and benzene are only partially miscible at temperatures below their UCST of $113.4^{\circ} \mathrm{C}$. At $100^{\circ} \mathrm{C}$ one liquid phase is approximately 0.48 mole fraction benzene, and the other 0.94 mole fraction benzene. The liquid molar volume of perfluoro-n-heptane and benzene at $25^{\circ} \mathrm{C}$ are $226 \mathrm{cc} /$ mole and $89 \mathrm{cc} /$ mole, respectively. Check if above data is consistent with Regular Solution behaviour with $\delta($ benzene $)=9.2(\mathrm{cal} / \mathrm{cc})^{1 / 2}$; $\delta($ perfluoroheptane $)=12.0(\mathrm{cal} / \mathrm{cc})^{1 / 2}[\mathrm{No}]$
2. In a binary mixture of B and C, at const. T and P, $G^{E} / R T=x_{B} x_{C}\left[2.0+0.2\left(x_{B}-x_{C}\right)-0.8\left(x_{B}-x_{C}\right)^{2}\right]$ Determine the composition limits of essential stability of the mixture. $\left[\mathrm{x}_{\mathrm{B}}=0.35,0.7\right]$
3. A solute ' A ' dissolves to partition into two fully immiscible liquids ' B ' and ' C '. Phase I contains only ' A ' and ' B ' and is equimolar, while phase II contains $95 \mathrm{~mole} \%$ ' C^{\prime}. The liquid phase coefficient model is of the form: $G^{E} / R T=\beta \chi_{i} x_{j}$. If $\beta=1$ for phase I, compute that for phase II. [2.83]
4. The solubility (mole fraction) of a substance A (solid) in water is 3.37×10^{-10} at 25 C . The melting point of the solid is 178.1 C , and its heat of fusion $15.1 \mathrm{~kJ} / \mathrm{mole}$. Estimate the acitivity coefficient of A in water. What does the value suggest in terms of interaction of the two? [3.8×10^{8}]
5. A liquid solution at $400^{\circ} \mathrm{K}$ and 1 atm , contains $5 \mathrm{~mol} \%$ of ' 1 ' and $95 \mathrm{~mol} \%$ of ' 2 '. The mixture is cooled isobarically. By how much does the temperature drop before just the first solid particle appears? Assume that both the phases form ideal solution. The melting point and fusion enthalpies (constant) are: $T_{m 1}=353.4 \mathrm{~K} ; T_{m 2}=278.7 \mathrm{~K} ; \Delta H_{\text {fus }, 1}(\mathrm{~J} / \mathrm{mol})=19008 ; \Delta H_{\text {fus }, 2}(\mathrm{~J} / \mathrm{mol})=9843$ [1250 K$]$
6. A pure solid (1) exists in equilibrium with a mixture of its vapour and a gas (2) at $400^{\circ} \mathrm{K}$. The vapour mixture contains $0.1 \mathrm{~mol} \%$ of the solute (1) and forms an ideal solution. Calculate the pressure of the system. The molar volume of solid at $400^{\circ} \mathrm{K}$ is $200.0 \mathrm{~cm}^{3} / \mathrm{mol}$. Data: $\log _{10} P^{\text {sub }}($ bar $)=2.0-\frac{1600}{T\left({ }^{0} K\right)}$ The second virial coefficients at 4000 K are: $B_{11}=-565, B_{22}=-400, B_{12}=-350 \mathrm{~cm}^{3} /$ mole.
